Allen-Bradley_PLC

本应用使用AB的eip-cip协议,从AB PLC读取PLC导出的数据。通讯链路为以太网。

支持的设备系列

产品系列	分类
SLC 500 系列	PLC
PLC-5 系列	PLC
ControlLogix 系列	LGX
CompactLogix 系列	LGX
FlexLogix 系列	LGX
Micrologix 系列	MLGX800
Micro800 系列	MLGX800

已经测试过的设备型号

型号	分类
SLC-5/05 (1747-L553/C)	SLC
MicroLogix 1100 (1763-L16BWA)	SLC
ControlLogix5571 (1756-L71)	LGX
ControlLogix5555 (1756-L55/A)	LGX
ControlLogix5573 (1756-L73)	LGX
ControlLogix 5580 (1756-L82ES)	LGX
CompactLogix L16ER (1769-L16ER/B)	LGX
CompactLogix 1769 L30ERMS	LGX
CompactLogix 5318 (1769-L18)	LGX
CompactLogix 5370 (1769-L18ER)	LGX
CompactLogix L32E (1769)	LGX
CompactLogix L23E (1769-L23E-QB1B)	LGX
GuardLogix 5570 (1756-L72S)	LGX
MicroLogix 1400 (1766-L32BXB)	MLGX

通讯协议

本应用基于libplctag, 通讯协议为CIP-EtherNet/IP (CIP/EIP or EIP)

应用配置

处理器(CPU)型号

CPU型号	PLC系列
PLC	plc5, plc, slc, slc500

LGX_PCCC	lgxpccc, logixpccc, lgxplc5, logixplc5, lgx-pccc, logix-pccc, lgx-plc5, logix-plc5
MLGX800	micrologix800, mlgx800, micro800
MLGX	mricrologix, mlgx
LGX	compactlogix, clgx, lgx, controllogix, contrologix, flexlogix, flgx

apps:app00000084

设备地址

PLC设备的IP地址

数据路径

路径是CPU模块在整个PLC的位置信息,有架号槽号组成,如1,0中架号为1、槽号为0。小型PLC的路径通常为1,0。大型PLC需要查看具体CPU模块所在的架号和槽号。

采集周期

获取PLC数据的时间间隔、由于PLC通讯协议不是订阅模式,应用只能周期性的去获取PLC设备的数据,这里需要指定时间间隔。 注意: PLC的处理能力有限,所以尽可能的使用较大的时间间隔,降低PLC的运行负载

设备模板

应用具体读取那些数据点需要在设备模板中指定,这里只能选择一个设备模板。即一个应用示例只负责和一个PLC进行通讯。

设备模板

参考模板

Meta 部分

此部分描述设备信息,包含以下字段:

字段名称	字段说明
name	设备名称,如 ControlLogix5555
description	设备描述 ControlLogix5555 (1756-L55/A)
series	设备系列号 , 如 1756-L55

Prop 部分

字段名称	字段说明	备注
name	属性点(数据点)名称	只能是字母、数字、下划线
description	描述信息	可以是任意字符串
unit	数据单位	

https://freeioe.org/ Printed on 2025/11/22 07:01

RW	数据读写类型	RO-只读 RW-读写 WO-只写
Inala IVIDO	PLC数据类型,支持 uint8/16/32/64 int8/16/32/64 float32/64 bool string	只能是这些类型之一
vt	FreeIOE数据类型□int/float/string)	
elem_name	PLC中导出的数据点名称	字符串
offset	数据偏移量(针对PLC数据是数组的情况,从0开始,单位是数据类型的长度)	
rate	数据计算系数,默认为1	如PLC导出的数据100,而rate设置为0.001 那么数据的数值会是0.1

data type

从PLC编程软件中查看数据点类型。类型对应关系如下:

PLC 数据类型	data type
UINT8	uint8
UINT16	uint16
UINT32	uint32
SINT8	int8
SINT16	int16
SINT32	int32
REAL32/FLOAT32	float32
REAL64/FLOAT64	float64
BOOL	bool
STRING	string

From:

https://freeioe.org/ - FreeIOE 知识库

Permanent link:

https://freeioe.org/apps/app00000084

Last update: 2022/07/12 11:29

